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ABSTRACT

Accumulating evidence has suggested that NAD (including NAD* and NADH) and NADP (including NADP*
and NADPH) could belong to the fundamental common mediators of various biological processes, including
energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of oxidative stress,
gene expression, immunological functions, aging, and cell death: First, it is established that NAD mediates en-
ergy metabolism and mitochondrial functions; second, NADPH is a key component in cellular antioxidation
systems; and NADH-dependent reactive oxygen species (ROS) generation from mitochondria and NADPH
oxidase-dependent ROS generation are two critical mechanisms of ROS generation; third, cyclic ADP-ribose
and several other molecules that are generated from NAD and NADP could mediate calcium homeostasis;
fourth, NAD and NADP modulate multiple key factors in cell death, such as mitochondrial permeability tran-
sition, energy state, poly(ADP-ribose) polymerase-1, and apoptosis-inducing factor; and fifth, NAD and NADP
profoundly affect aging-influencing factors such as oxidative stress and mitochondrial activities, and NAD-
dependent sirtuins also mediate the aging process. Moreover, many recent studies have suggested novel par-
adigms of NAD and NADP metabolism. Future investigation into the metabolism and biological functions of
NAD and NADP may expose fundamental properties of life, and suggest new strategies for treating diseases

and slowing the aging process. Antioxid. Redox Signal. 10, 179-206.

I. INTRODUCTION

NICOTINAMIDE ADENINE DINUCLEOTIDE (NAD™), reduced
nicotinamide adenine dinucleotide (NADH), nicoti-
namide adenine dinucleotide phosphate (NADP™), and reduced
nicotinamide adenine dinucleotide phosphate (NADPH) have
been known as classic molecules involving in energy metabo-
lism, reductive biosynthesis, and antioxidation (27, 29, 233).
Structurally NADP™ is identical to NAD™ except for the addi-
tional 2’ phosphate on the adenosine ribose moieties of NADP™.
However, NAD (including NAD™ and NADH) are mainly used
by the enzymes that catalyze substrate oxidation, while NADP
(including NADP™ and NADPH) are mainly used by the en-
zymes that catalyze substrate reduction (233).

Increasing evidence has suggested that the pyridine nucleo-
tides NAD and NADP have far more extensive biological func-
tions than their classical functions (27, 29, 233, 328, 329). The
following findings may be of particular interest: a) Recent stud-
ies have indicated pivotal roles of NAD"-dependent histone
deacetylases (i.e., sirtuins) in aging (35); b) poly(ADP-ribose)
polymerase-1 (PARP-1)—a major NAD"-consuming en-
zyme—-appears to mediate oxidative cell death under many
conditions (296, 328); ¢) cyclic ADP-ribose and nicotinic acid
adenine dinucleotide phosphate (NAADP)—-two endogeneous
molecules generated from NAD"—-are key signaling mole-
cules mobilizing intracellular calcium stores (159, 160); and d)
NADPH oxidase is a major generator of reactive oxygen species
(ROS) in both immunological reactions and multiple diseases
(26). These seemingly diverse topics of biomedical research are
fundamentally linked by NAD and NADP. In recent years there
have also been a number of novel findings regarding the me-
tabolism of NAD and NADP. For examples, three isoforms of
nicotinamide mononucleotide adenylyltransferases (NM-
NATs)—-the key NAD"-synthesizing enzymes—-have been
found in various subcellular organelles (30, 182, 235); and
novel pathways by which NADH and NADPH are generated
have also been found (30, 102, 221). Collectively, these find-
ings have strongly suggested the necessity to search for novel
paradigms about the metabolism and biological functions of

NAD and NADP, which may be required for exposing the fun-
damental mechanisms in biology as well as the essential rela-
tionships among various biological and pathological processes.

II. METABOLISM OF NAD AND NADP

A. General information about NAD and NADP

Intracellular levels of NAD are significantly higher than those
of NADP under physiological conditions (233). Because it is
generally belived that mitochondrial membranes are imperme-
able to NAD and NADP (82, 83, 164, 233), there are two ma-
jor pools of NAD and NADP in cells: the cytosolic pool and
the mitochondrial pool. However, cytosolic reducing equiva-
lents of NADH can be shuttled into mitochondria by the NADH
shuttles, which maintain the NADH homeostasis in cytosol
(195). The mitochondria pool of NAD™ represents a significant
portion of the total NAD™ pool in myocytes (82). However,
there is no sufficient information about the percentage of mi-
tochondrial NAD™ in the total pools of NAD™ in other cell
types. It has been reported that mitochondrial permeability tran-
sition (MPT) pore opening in myocytes can lead to mitochon-
drial NAD™ release and subsequent hydrolysis of NAD™ by
NAD™ glycohydrolase (82). A recent study has also suggested
that MPT mediates the PARP-1 activation-induced mitochon-
drial NAD™ loss of mouse neurons and astrocytes (7), which
may significantly contribute to metabolic dysfunction (271).
Due to the critical roles of NAD and NADP in cellular func-
tions and cell death, it is of great interest to further determine
the relationships between cytosolic NAD/NADP and mito-
chondrial NAD/NADP.

Under physiological conditions, the ratio of cytosolic free
NAD™/NADH is ~ 700 to 1 (276, 294, 342), while the mito-
chondrial NAD"/NADH ratio has been reported to be 7-8 (276,
294). In contrast, the levels of NADPH are much higher than
those of NADP™* (122, 233). Cumulating evidence has sug-
gested that cytosolic free NAD'/NADH ratios are altered un-
der various pathological conditions. For example, in diabetic



BIOLOGICAL PROPERTIES OF NAD AND NADP

tissues there are sorbitol pathway-mediated decreases in
NAD*/NADH ratios (122, 207), which may play a crucial role
in the pathogenesis of diabetic complications (122). Because
the ratios of NAD*/NADH and NADP*/NADPH can affect
numerous enzymatic activities and MPT (352) which play im-
portant roles in cell death under many conditions (69, 150, 165),
it is warranted to further determine the changes of these ratios
under both physiological and pathological conditions.

B. NAD synthesis

NAD™ biosynthesis plays a central role in the metabolism of
NAD and NADP, because NAD™ is necessary for the genera-
tion of NADH, NADP™", and NADPH. Two known NAD"
biosynthesis pathways are the de novo pathway and the salvage
pathway (181, 182). Nicotinamide and nicotinic acid are the
NAD™ precursors in the salvage pathway (30, 181, 182), which
are first transferred onto phosphoribosyl pyrophosphate by
phosphoribosyl transferases to form nicotinamide mononu-
cleotide (NMN) or nicotinic acid mononucleotide (NaMN), re-
spectively. Subequently NMN and NaMN are converted by
NMNATSs to NAD* and NaAD, respectively. NaAD is then
amidated by NAD™ synthase to generate NAD™. There are dis-
tinct differences between the salvage pathway of mammals and
that of yeast and invertebrates (238). Mammals use nicoti-
namide instead of nicotinic acid as the main precursor for
NAD™ synthesis: Nicotinamide is directly converted by nicoti-
namide phosphoribosyltransferase (Nampt) to NMN that is sub-
sequently used by NMNATS for NAD* generation (238). In
contrast, in yeast and invertebrates nicotinamide can not be used
directly for NAD* synthesis before its conversion to nicotinic
acid (238).

Quinolinic acid is the NAD™ precursor in the de novo path-
way, which is generated from either L-tryptophan in animals
and some bacteria, or L-aspartate in some bacteria and plants
(135). Quinolinic acid is converted by quinolinic acid phos-
phoribosyltransferase to NaMN, which is subsequently con-
verted to NAD™ by NMNATSs and NAD™ synthase (233).

The nuclear enzyme NMNAT-1 is a key enzyme in both the
de novo pathway and the salvage pathway of NAD™ synthesis
(29), which had been the only known NMNAT until recently.
It has been reported that the loss of NMNAT-1 in Drosophila
leads to rapid and severe neurodegeneration that can be ame-
liorated by blockage of neuronal activity (340). A latest study
has also found that NMNAT-1 can bind the poly(ADP-ribose)
(PAR) on activated PARP-1 and promote poly(ADP-
ribosyl)ation (31). Protein kinase C-mediated phosphorylation
of NMNAT-1 can lead to decreased binding of NMNAT-1 to
PAR (31). This close interaction between a key NAD'-syn-
thesizing enzyme and a key NAD*-consuming enzyme is in-
triguing, since it implicates potential coordination between
NAD™ generation and NAD™ consumption in the nucleus. It
has also been found that the gene product of human homolog
of NMNAT-1 constitutes a major portion of the chimeric pro-
tein that mediates the delay in Wallerian neurodegeneration of
WId(S) mice (14, 182), suggesting a potential role of NMNAT-
1 in axonal degeneration (14, 302). Recent studies have indi-
cated the presence of three isoforms of human NMNATs—-
NMNAT-1, NMNAT-2, and NMNAT-3 (30, 182, 235), which
are located in the nucleus, the Golgi complex, and mitochon-
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dria, respectively (30, 182, 235). These findings, together with
the observations indicating the presence of tankyrase in Golgi
complex (54) and NAD " -consuming enzymes in mitochondria
(82, 85, 172), suggest that there are relatively independent ma-
chineries of NAD metabolism in the nucleus, the Golgi com-
plex, and mitochondria.

Recent studies have indicated multiple novel and interesting
properties of Nampt—-another key enzyme in NAD™ synthe-
sis: it has been demonstrated that three seemingly different pro-
teins—-Nampt, the presumptive cytokine pre-B-cell colony-en-
hancing factor (PBEF), and a new visceral fat-derived hormone
visfatin—-are actually the same protein (95, 188, 237, 241).
The presence of Nampt/PBEF/visfatin in plasma raises an in-
triguing possibility that this protein might generate NMN ex-
tracellularly using the nicotinamide in plasma as a substrate,
which may be subsequently transported into cells for NMNAT-
catalyzed NAD™ synthesis (238). While many future studies
are needed to demonstrate this hypothesis, our understanding
regarding NAD™ synthesis could be significantly revised if this
hypothesis were demonstrated: The processes of NAD™ syn-
thesis may not only occur intracellularly in the nucleus and other
subcellular organelles, but also occur extracellularly. It has also
been proposed that the cytokine-like functions of PBEF and the
insulin-mimetic functions of visfatin may be accounted for by
the NAD *-synthesizing functions of Nampt (238). Demonstra-
tion of this hypothesis would further deepen our understanding
about the biological functions of the extracellular metabolic in-
termediates in NAD™ synthesis. Figure 1 provides diagram-
matic presentation of the NAD™ metabolic machineries in cells.

It is noteworthy that the kynurenine pathway leads to gener-
ation of several neuroactive intermediates, including quinolinic
acid, kynurenic acid, and 3-hydroxykynurenine (206, 249, 255).
Thus, the kynurenine pathway has been a target for treatment
of multiple neurological diseases (206, 249, 255). Increasing
evidence has also suggested significant biological activities of
nicotinamide and nicotinic acid—-two important components
in NAD* metabolism: Nicotinic acid can significantly affect
brain functions by such pathways as inducing glutamate release
(301); and nicotinamide can also enhance energy metabolism,
inhibit PARPs and sirtuins, and activate Akt (145, 168, 183,
312). A number of studies have also suggested therapeutic po-
tential of nicotinamide for multiple diseases such as cerebral
ischemia (19, 145, 183, 191). Recently it has been found that
nicotinamide riboside—-a novel NAD™ precursor in eukary-
otes—-can significantly extend the replicative lifespan of yeast
(28).

A recent study has suggested a novel pathway for NADH
generation: NADH may be directly generated from reduced
form of NMN and ATP by NMNAT-2 and NMNAT-3, but not
NMNAT-1 (30). It is warranted to further determine the phys-
iological significance of this pathway.

C. NADP synthesis

There are two major mechanisms by which NADP™ can be
formed: NADP™ can be generated de novo from NAD™" through
the action of NAD™ kinases (NADKSs) (166); and NADP* can
also be formed from NADPH by multiple NADPH-dependent
enzymes such as glutathione reductase (233). There are also
two major mechanisms by which NADPH can be formed: The
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first is that NADPH is generated from NADH and NADP* by
mitochondrial transhydrogenase; and the second is that NADPH
is generated from NADP* by multiple NADP*-dependent en-
zymes.

NADKSs play a critical role in determining the levels of
NADP, since the enzymes are the sole enzymes that can de novo
generate NADP™. Thus, elucidation of the mechanisms under-
lying the regulation of NADKSs is critical for understanding the
regulation of NADP levels. Essential roles of NADKSs in vari-
ous biological activities of both prokaryotes and eukaryotes
have been reported (105, 233, 264). Whereas three isoforms of
NADKSs have been found in yeast, there is only one known
NADK in mammals (233).

There are four known groups of enzymes that catalyze
NADPH formation from NADP* in cells: First, glucose-6-
phosphate dehydrogenase and 6-gluconate phosphate dehydro-
genase—-two enzymes in the pentose phosphate pathway (also
called ‘hexose monophosphate shunt’); second, cytosolic and
mitochondrial NADP™"-dependent isocitrate dehydrogenases
(IDPc and IDPm) (201); third, cytosolic and mitochondrial
NADP*-dependent malic enzymes (MEPc and MEPm); and
fourth, mitochondrial transhydrogenase (246).

In cytosol, NADPH can be generated by glucose-6-phosphate
dehydrogenase, 6-gluconate phosphate dehydrogenase, IDPc,
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FIG. 1. NAD* metabolism in cells. NAD" me-
tabolism occurs both intracellularly in various sub-
cellular organelles and extracellularly. The key
NAD™ synthesizing enzymes NMNAT-1, NM-
NAT-2, and NMNAT3 are located at the nucleus,
the Golgi complex, and mitochondria, respectively.
There are NAD"-consuming enzymes in these or-
ganelles, including poly(ADP-ribose) polymerase-
1 (PARP-1), PARP-2, and certain sirtuins in the nu-
cleus, tankyrase in the Golgi complex, and NAD™
glycohydrolases in mitochondria. On plasma mem-
branes, mono(ADP-ribosyl) transferases (ARTs)
and ADP-ribosyl cyclases (ARCs) produce
mono(ADP-ribosyl)ation on target proteins and
generate cyclic ADP-ribose, respectively. Nicoti-
namide phosphoribosyltransferase (Nampt) may
exist extracellularly and produce its biological ef-
fects by generating nicotinamide mononucleotide
from nicotinamide.

or MEPc (162, 180, 315). It has been reported that in yeast cy-
tosolic acetaldehyde dehydrogenase also mediates NADPH
generation from NADP™ (102). In mitochondria NADPH can
be generated from NADP* by IDPm, MEPm, or transhydro-
genase (127). Figure 2 shows the pathways by which NADPH
is generated in cytosol and mitochondria.

Glucose-6-phosphate dehydrogenase is a key enzyme for
NADPH generation (146). While it is long thought as a “house-
keeping” enzyme present in all cell types, the enzyme can also
undergo tissue-specific regulation by various factors, including
oxidative stress, hormones, and nutrients (146). Although glu-
cose-6-phosphate dehydrogenase is the most well-studied en-
zyme for NADPH synthesis, some studies have also suggested
significant contributions of IDPc and MEPc to cytosolic
NADPH synthesis and cellular antioxidation capacity (162,
180).

Mitochondrial transhydrogenase is located in the inner mem-
branes of animal mitochondria, which couples the translocation
of protons across mitochondrial membranes to the transfer of
reducing equivalents between NAD(H) and NADP(H) (127).
Under most physiological conditions, the enzyme is driven to-
ward the reduction of NADP* by NADH via utilization of mi-
tochondrial transmembrane electrochemical gradient of proton
(246). Recent studies using transhydrogenase-knockout mice

FIG. 2. Pathways by which NADPH

CYTOSOL NAD*—NAPK | v appr —S8P0H 6GDH | ADPH is generated in cytosol and mito-
- ICPc, MEPc chondria. In cytosol NADP™ is gen-
erated from NAD™ by NAD™ kinase

(NADK). NADPH can be generated

from NADP™ by glucose-6-phosphate-
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enzymes (MEPc). In mitochondria NADP* is generated from NAD™ by NAD™ kinase, and NADPH can be generated from
NADP* by mitochondrial NADP*-dependent isocitrate dehydrogenase (IDPm), mitochondrial NADP*-dependent malic enzymes

(MEPm), or mitochondrial transhydrogenase (TH).
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have indicated that deletion of the gene can lead to type II di-
abetes (94), which raises the question why the transhydroge-
nase deletion selectively impairs insulin secretion.

Whereas multiple enzymes can generate NADPH, the rela-
tive contribution of these enzymes to the general NADPH pro-
duction in cells can be variable in different cell types or under
different conditions. It has been suggested that at least for brain
mitochondria, all of the three mitochondrial enzymes that can
generate NADPH contribute to the mitochondrial NADPH gen-
eration and the reduction of oxidized glutathione in mitochon-
dria (297). A significant role of IDPm in cellular antioxidation
capacity has also been shown in NIH3T3 cells (162). Recent
studies have suggested that at least in certain mammalian cells
IDPm is a major source of mitochondrial NADPH, which can
be inhibited by lipid peroxidation products (313) and regulated
by Ca?*t (275). It has also been found that ROS can induce
IDPm expression (130).

In yeast, Outten et al. found a novel NADPH-generating
pathway—-the NADH kinase-dependent pathway for NADPH
generation (221): the POSS5 gene product Pos5p has NADH ki-
nase activity that generates NADPH by catalyzing phosphor-
ylation of NADH, which appears to be a major NADPH-gen-
erating enzyme in yeast (221). Disruption of POSS led to a
50-fold increase in the mitochondrial mutation rate in yeast
(264). However, it is unclear if similar mechanisms also exist
in high eukaryotes.

D. Catabolism of NAD and NADP

NAD™ can be consumed by multiple families of enzymes,
including PARPs, sirtuins, ADP-ribosyl cyclases, and
mono(ADP-ribosyl) cyclases, leading to generation of nicoti-
namide and other products containing ADP-ribose as the core
structural component. The reactions catalyzed by these NAD -
dependent enzymes can profoundly affect various biological
processes. The major NAD " -consuming enzymes include:

First, PARPs are a family of enzymes that consume NAD*
to produce PAR on target proteins (296). PARP-1 has been the
most intensively studied member of PARP family, which ap-
pears to play important roles in regulation of various cellular
and subcellular processes, including DNA repair, gene expres-
sion, genomic stability, cell cycle, and cell death (254, 296,
328). PARP-1 has also been shown to mediate multiple bio-
logical functions of tissues and organs, such as inflammation
and learning and memory (44,296). Excessive PARP-1 activa-
tion has been found to mediate ischemic injuries of various or-
gans, diabetes, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced parkinsonism, traumatic brain injury, hypo-
glycemic brain damage, and shock (296, 328).

Second, bifunctional ADP-ribosyl cyclases/cyclic ADP-ri-
bose hydrolases can consume NAD™* to generate cyclic ADP-
ribose as well as hydrolyze cyclic ADP-ribose into free ADP-
ribose (347). The mammalian ADP-ribosyl cyclase CD38 is of
particular interest: This enzyme could be a major regulator of
intracellular NAD* concentrations under physiological condi-
tions (4); and CD38-generated cyclic ADP-ribose could play
critical roles in many biological processes (159, 160, 329).

Third, the NAD*-dependent histone deacetylases (or called
Sir2 family proteins or sirtuins) produce deacetylation of both
histones and nonhistone proteins by consuming NAD™. This
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process could profoundly affect aging, carcinogenesis, and cell
death (79, 250).

Fourth, mono(ADP-ribosyl)transferases (ARTSs) are a family
of enzymes that consume NAD™ to produce mono(ADP-ribo-
sylation of proteins (64, 81). Recent studies have suggested
that ART1-5 are expressed in various cell types (63, 261). No-
tably, the ecto-enzyme ART2 on the plasma membranes of Treg
cells—-a subset of T cells that mediates immunological activ-
ities—-can produce mono(ADP-ribosyl)ation of P2X; receptors
resulting in apoptosis of Treg cells (17, 147).

There is increasing evidence suggesting that CD38 could me-
diate intracellular NAD™ levels under physiological conditions,
while PARP-1 could mediate intracellular NAD™" levels when
significant DNA damage occurs: A recent study reported that
there are significant increases in the the tissue levels of NAD™
in CD38 knockout mice compared with wild-type mice (4). The
extent of the increases is tissue-dependent, ranging from 2-fold
(kidney) to 25-fold (heart). These results suggest that CD38 is
a fundamental regulator of NAD™ levels under physiological
conditions (4). It has also been established that PARP-1 medi-
ates NAD™ depletion when significant DNA damage occurs
(74, 329), while there is no significant difference between the
NAD™ levels in the brains of PARP-1 knockout mice and the
brains of wild-type mice under physiological conditions (88).

The major known NADP*-degrading enzyme is NAD(P)*
nucleosidase that degrades NADP* to ADP-ribose(2’-phos-
phate) and nicotinamide (182). NADP™ could also be converted
to NAADP—-an important regulator of intracellular calcium
stores (96, 159, 160). While increasing evidence has indicated
that NAD™ can be consumed through many pathways, thus pro-
ducing various major biological effects, it remains unknown if
NADP* may also be catabolized through multiple pathways.

E. Relationships between NAD and NADP

Two enzymes, NADKs and mitochondrial transdehydroge-
nase, are essential for regulating the conversion between
NAD(H) and NADP(H): NADKSs are the sole enzymes cat-
alyzing the generation of NADP* from NAD™, while it can not
catalyze the conversion between NADH and NADPH (194); in
contrast, transhydrogenase catalyzes the generation of
(NADPH + NAD™) from (NADP* + NADH). Due to the crit-
ical biological functions of NAD and NADP, NADKSs and tran-
shydrogenase could produce profound effects on cellular func-
tions through its effects on the balance between NAD pool and
NADP pool.

It has been reported that NADKSs can be regulated by multi-
ple factors: NADKSs can be inhibited by such factors as NADH
and NADPH (339), and activated by such factors as cal-
cium/calmodulin (9,65). It is particularly interesting that ox-
idative stress (41, 105) and calcium/calmodulin can activate
NADKs (9, 65), considering the established critical roles of ox-
idative stress and calcium/calmodulin in numerous biological
and pathological processes (113, 190, 291, 318, 321, 322). Fu-
ture studies are certainly warranted to further determine the reg-
ulation of these enzymes, and to determine the biological con-
sequences of the regulation.

There are studies suggesting that the total levels of (NAD +
NADP) could be increased under certain conditions: It was
found that fasting led to increased NAD™ levels by 33% in liver,
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which returned to control levels by refeeding (240); serum with-
drawl also induced increased PBEF expression in smooth mus-
cle cells, which can lead to increased intracellular NAD™" lev-
els (292); and pyridine nucleotide synthesis was also inducted
by mitogens (32). Moreover, it was reported that the total NADP
levels were significantly increased in phorbol myristic acetate-
treated human neutrophils (306).

F. NAD transport across mitochondrial
membranes

It is generally believed that mitochondrial inner membranes
are not permeable to NAD (286). However, this belief has been
challenged by several studies: Two mitochondrial NAD™ trans-
porters, named Ndtlp and Ndt2p, have been found to import
NAD™ into the mitochondria of Saccharomyces cerevisiae
(282); intact plant mitochondria can uptake NAD* in a con-
centration-dependent and temperature-dependent manner (215,
281); and there was NAD™ influx into the mitochondrial ma-
trix of cultured human cells harvested under quiescent condi-
tions, when external NAD" was added to the digitonin-perme-
abilized cells (244).

Whereas mitochondrial inner membranes could be imper-
meable to NADH, the reducing equivalents of cytosolic NADH
can be shuttled into mitochondria by NADH shuttles, includ-
ing the malate—aspartate shuttle and the glycerol-3-phosphate
shuttle (195). The major components of the malate—aspartate
shuttle include cytosolic malate dehydrogenase, aspartate
transaminase, mitochondrial aspartate—glutamate carrier, and
mitochondrial malate dehydrogenase. The glycerol-3-phosphate
shuttle is composed of cytosolic glycerol-3-phosphate dehy-
drogenase and mitochondrial glycerol-3-phosphate dehydroge-
nase.

The levels of cytosolic NADH can be regulated by not only
the NADH shuttles, but also the lactate dehydrogenase-cat-
alyzed pyruvate—lactate conversion and other dehydrogenase-
catalyzed reactions (195). Due to the critical roles of these path-
ways in energy metabolism and other biological functions, the
NADH shuttles may profoundly affect cellular functions due to
its impact on cytosolic NADH. It is also conceivable that al-
terations of the NADH shuttles may produce major pathologi-
cal consequences.

Several recent studies have used the malate—aspartate shut-
tle- or the glycerol-3-phosphate shuttle-deficient mice to de-
termine the biological functions of the NADH shuttles. A re-
cent study provided critical information regarding the
regulation of NADH shuttles in neurons (224): Because AR-
ALAR—-the neuronal Ca?*-binding mitochondrial aspar-
tate—glutamate carrier—-plays a role in the malate—aspar-
tate shuttle and has Ca’?* binding domains facing the
extramitochondrial space, the researchers determined the ef-
fects of Ca®" signals on the NADH shuttling activity. The
study indicated a novel mechanism by which small Ca®" sig-
nals that are below the levels to activate Ca>™ uniporters af-
fect mitochondrial NADH levels: the small Ca®" signals can
enhance NADH shuttling from cytosol to mitochondria by ac-
tivating ARALAR. It is of interest to further determine the
post-translational regulation of the NADH shuttles under both
physiological and pathological conditions.
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G. NAD transport across the plasma membranes
of cells

It had been generally thought that NAD* and NADH can not
be transported across the plasma membranes of any cell types.
However, recent studies have suggested that NAD " and NADH
can be transported across the plasma membranes of at least cer-
tain types of cells: Connexin 43 hemichannels could allow gra-
dient-dependent NAD™* flux across fibroblast plasma mem-
branes (42); and the studies by us and other researchers have
also suggested that NAD™ can be transported across the plasma
membranes of astrocytes (5, 295, 326).

Our latest study has provided the first evidence suggesting
that NADH can be transported across the plasma membranes
of astrocytes, which is mediated by P2X; receptors (177): we
found that treatment of astrocytes with 10 uM—10 mM NADH
significantly increased intracellular NADH and NAD™. Three
lines of evidence have suggested that the NADH transport is
mediated by purinergic P2X; receptors: the P2 receptor antag-
onist pyridoxalphosphate-6-azophenyl-2’,4’-disulphonic acid
abolished the NADH transport; RNA silencing-produced re-
ductions of P2X5 receptors also decreased the NADH transport;
and transfection of P2X receptor-deficient HEK293 cells with
mouse P2X5 receptor cDNA increased the NADH transport in
the cells. Collectively, our study provides the first direct evi-
dence demonstrating that NADH can be transported across the
plasma membranes of certain cell types by a P2X; receptor-
mediated mechanism. Our study also suggests a new approach
for manipulating intracellular NADH and NAD™ levels. Future
studies are needed to determine if NADH can also be trans-
ported across the plasma membranes of other cell types, and if
pathological conditions can alter the NADH transport.

III. BIOLOGICAL FUNCTIONS OF NAD
AND NADP

A. General information about the biological
functions of NAD and NADP

While it has been long thought that the major biological func-
tions of NAD are modulating cellular energy metabolism, in-
creasing evidence has suggested that NAD also mediates cell
death (5, 296, 326) and various major biological activities such
as calcium homeostasis (29, 347) and gene expression (245,
342). Growing evidence has further indicated significant roles
of NAD in such important biological processes as aging, car-
cinogenesis, and immunological functions (29, 35).

The major biological functions of NADPH are three fold: the
first is to act as a key component in cellular antioxidation sys-
tems; the second is to act as an electron source for reductive
synthesis of fatty acids, steroids, and DNA (233); and the third
is to act as the substrate for NADPH oxidase that plays key
roles in many biological and pathological processes by gener-
ating ROS.

Recent studies have suggested distinct biological functions
of the multiple NADPH-generating machineries: While both
IDPc and IDPm play a significant role in defending oxidative
damage (130), IDPc also mediates lipid metabolism (148). The
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sources of NADPH generation may determine the biological ef-
fects of NADPH: The NADPH generated by the mitochondrial
enzymes could mainly contribute to mitochondrial antioxida-
tion and biosynthesis, while the NADPH generated by the cy-
tosolic enzymes may also contribute to NADPH oxidase-de-
pendent ROS generation when NADPH oxidase is activated.

The major known biological function of NADP™ is acting as
the precursor for NADPH formation. NADP™ could also be a
precursor for generation of NAADP—-an endogenous mole-
cule that can mobilize acidic intracellular calcium stores (96,
159, 160). NAADP and cyclic ADP-ribose—-two molecules
generated from NADP* and NAD*—-have emerged as im-
portant regulators of calcium homeostasis.

B. NAD and NADP in antioxidation and
oxidative stress

PARP-1 plays a key role in oxidative cell death under many
conditions (296, 328). Increasing evidence has suggested that
NAD™ depletion mediates PARP-1-induced cell death (5,
326-329). NAD may also affect antioxidation and generation
of oxidative stress through several pathways: First, the
NADH/NAD™ ratio is an index of cellular reducing potential,
since the redox couple plays key roles in numerous redox re-
actions and has one of the most negative reduction potential
(—0.32 V) in cells; second, NAD™ can be converted by NADKs
to NADP*—-the precursor for NADPH formation (194); third,
some studies have suggested direct antioxidation effects of
NADH (144, 192, 220); and fourth, NAD" can inhibit ROS
generation from a-ketoglutarate dehydrogenase and pyruvate
dehydrogenase as well as permeablized rat brain mitochondria
(274). Seemingly paradoxically, excessive intracellular NADH
can produce ‘reductive stress’, which may result from its ca-
pacity to induce release of ferrous iron from ferritin (128), or
from the capacity of xanthine oxidase/xanthine dehydrogenase
to generate ROS by oxidizing NADH (344).

NADPH is one of the most important factors in cellular an-
tioxidation through the following pathways: first, NADPH is
required for regeneration of GSH from GSSG through the ac-
tion of glutathione reductase. GSH is essential for the functions
of several key antioxidation enzymes including glutathione per-
oxidase and glutathione S-transferases (309). Second, at least
in some cell types, a large portion of NADPH binds the im-
portant H,O,-disposing enzyme catalase (143), which reacti-
vates catalase when catalase is inactivated by H,O,. Third,
NADPH is also an essential component in another important
antioxidation system—-the thioredoxin system (15).

A crucial role of the pentose phosphate pathway in defend-
ing oxidative stress has been reported by multiple studies (223,
269). For example, in a study that used male mouse embryonic
stem cells with genetic inhibition of glucose-6-phosphate de-
hydrogenase, glucose-6-phosphate dehydrogenase appears to be
essential in defending oxidative stress but is dispensable for
pentose synthesis (223). Whereas it is widely accepted that
NADPH mediates cellular antioxidation mainly through its ef-
fects on GSH regeneration, it has been reported that in red blood
cells, NADPH plays a significantly more important role than
GSH in defending oxidative insults (258), possibly due to the
capacity of NADPH in reactivating catalase. A key role of glu-
cose-6-phosphate dehydrogenase in NADPH synthesis and an-
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tioxidation has been further indicated by the findings that the
red cells from the patients of glucose-6-phosphate dehydroge-
nase deficiency have increased sensitivity to oxidative stress
(268). Recent studies have also established important roles of
IDPm in defending oxidative stress: overexpression and de-
creased expression of the enzyme leads to decreased or in-
creased sensitivity of mitochondria to oxidative stress, respec-
tively (130). It has also been reported that IDPc plays a
significant role in cellular antioxidation capacity (163). Figure
3 shows the pathways by which NADPH can decrease oxida-
tive stress in cells.

Because mitochondrial transhydrogenase mediates the cou-
pling of the H* translocation across mitochondrial membranes
to the transfer of reducing equivalents between NAD(H) and
NADP(H), it is tempting to propose that this enzyme may co-
ordinate the activity of the tricarboxylic acid (TCA) cycle and
the reducing potential of mitochondria: Increased TCA cycle
activity can lead to increased NADH generation, which could
both increase the H* gradient across mitochondrial membranes
and potentiate ROS generation from the electron transport
chain. Through transhydrogenase, an elevated H* gradient
could lead to increased NADPH generation and increased an-
tioxidation capacity of mitochondria. It is expected that inacti-
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FIG. 3. Effects of NADPH on cellular antioxidation capac-
ity. NADPH can be generated by glucose-6-phosphate dehy-
drogenase (G6PDH), 6-glyconate phosphate dehydrogenase
(6GPDH), NADP*-dependent isocitrate dehydrogenases
(IDPs), NADP*-dependent malic enzymes (MEPs), and trans-
hydrogenase (TH). NADPH can increase cellular antioxidation
capacity by acting as a substrate for glutathione reductase (GR)
to reduce GSSG to GSH that is required for the activities of
the antioxidation enzymes glutathione peroxidase (GPx) and
glutathione-S-transferases (GST). NADPH can also increase
antioxidation capacity by reactivating H,O,-inactiated catalase
(CAT), and by promoting thioredoxin reductase (TrxR)-medi-
ated regeneration of thioredoxin.
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vation of this enzyme under certain pathological conditions may
exacerbate oxidative damage to mitochondria, due to the un-
coupling between mitochondrial NADPH generation and the
NADH-dependent generation of oxidative stress from the elec-
tron transport chain.

Seemingly paradoxically, increasing evidence has suggested
that NADPH could also significantly contribute to generation
of oxidative stress through the activity of NADPH oxidase.
NADPH oxidase is an enzyme that catalyzes the generation of
superoxide from oxygen and NADPH. Increasing evidence has
indicated that NADPH oxidase activity is present not only in
phagocytes, but also in various tissues and cell types (26, 288).
Seven members of NOX family of NADPH oxidase, including
phagocyte NADPH oxidase itself (NOX2/gp91(phox)) and six
homologs of the cytochrome subunit of the phagocyte NADPH
oxidase (i.e., NOX1, NOX3, NOX4, NOX5, DUOXI, and
DUOX?2) have been found (26). These enzymes share the ca-
pacity to transport electrons across the plasma membrane, lead-
ing to superoxide generation, which could be mediated by such
factors as small guanosine triphosphatase Rac, protein kinase
C, and Ca>* (26, 124, 280, 288). There are significant tissue-
dependent differences in the distribution of the various mem-
bers of the NOX family (26, 101, 123).

Due to the pivotal roles of ROS in redox-based regulation of
various biological functions (263), it is not surprising that
NADPH oxidase appears to play important roles in not only
host defense, but also a large variety of biological processes,
including redox signaling (86), regulation of gene expression
and cell differentiation, and post-translational modifications of
proteins (26, 123). Of particular interest, many studies have in-
dicated key roles of the NADPH oxidase-generated ROS in a
variety of diseases, such as brain ischemia (26, 154, 266, 303),
diabetic nephropathy (67), and cardiac hypertrophy (211).

It was found that NOX4 is preferentially localized to the nu-
cleus of human umbilical vein endothelial cells, which appears
to regulate gene expression by generating ROS in the nucleus
(153). A recent study showed that ischemia induced NOX2 ex-
pression mainly at the nucleus of cardiomyocytes, which ap-
pears to mediate ischemia-induced apoptosis (196). It has also
been found that the NADPH oxidase NOX2 is recruited to the
early phagosomes of dendritic cells, which causes alkaliniza-
tion of the phagosomal lumen by generating ROS (251). These
studies have indicated that NADPH oxidase is localized not
only on plasma membranes, but also in such subcellular or-
ganelles as the nucleus. It is expected that future studies re-
garding the NADPH oxidases that are localized in subcellular
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organelles would provide novel information about the roles of
NADPH oxidase in biological functions and cell death. Figure
4 provides diagrammatic presentation of the pathways by which
NAD and NADP affect antioxidation and ROS generation.

It is worthy to note that GSH/GSSG ratios may also affect
the overall redox potential of cells due to the effects of
GSH/GSSG on NAD/NADP metabolism: Decreased GSH/
GSSG ratios may lead to decreased NADPH/NADP™* ratios,
due to the glutathione reductase-catalyzed regeneration of GSH
from GSSG with consumption of NADPH; and the decreased
NADPH/NADP™ ratios may also affect NADH/NAD™ ratios
due to the modulating capacity of NADKSs on the equilibrium
between NADPH/NADP™* ratios and NADH/NAD™ ratios.

C. NAD and NADP in calcium homeostasis

Mounting evidence has suggested that NAD" can mediate
calcium homeostasis through multiple pathways: a) ADP-ribo-
syl cyclases can generate cyclic ADP-ribose from NAD™,
which is a potent endogenous agonist of ryanodine receptor-
mediated calcium channels (108); b) NAD™ can also modulate
calcium metabolism by promoting mono-ADP-ribosylation of
P2X; receptors, which has been shown to increase P2X; re-
ceptor opening (17), thus leading to Ca>™ influx (216); ¢) ADP-
ribose, a molecule that can be generated from NAD* by NAD
glycohydrolases or PARPs/poly(ADP-ribose) glycohydrolase
(PARG), can activate TRPM2 receptors leading to Ca®* influx
(98, 151); and d) Sir2 family proteins can generate O-acetyl-
ADP-ribose that can directly bind to the cytoplasmic domain
of the TRPM2 channels and produce TRPM?2 channel opening,
resulting in Ca?™" influx (107).

There is evidence suggesting that NADH can also directly
modulate calcium homeostasis: Under hypoxic conditions,
NADH can directly increase Ca>" release from inositol 1,4,5-
triphosphate (IP3)-gated Ca?>* channels on ER membranes of
cerebellar Purkinje cells and nerve growth factor-differentiated
PC12 cells (134). It has been further found that the GAPDH
that is associated with IPs-gated calcium channels can locally
generate NADH to promote the Ca?>" channel opening (228).
NADH was also shown to inhibit ryanodine receptors of car-
diac muscle, but not skeletal muscle (348, 349), which could
be mediated by the NADH oxidase activity in cardiac sar-
coplasmic reticulum (53).

NADP™ is the major substrate for generation of NAADP that
can mobilize intracellular Ca2* stores (96). It has also been re-
ported that NAADP regulates TRPM2 channels in T lympho-
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nels, mitochondrial permeability transition (MPT) and RyR. NAADP generated from NADP can also mobilize intracellular
NAADP-dependent Ca?* stores. NADPH may affect calcium homeostasis by its major effects on antioxidation and ROS gener-

ation, which can affect Ca>* pumps and Ca?* channels.

cytes (25). Increasing evidence has suggested that NAADP is
one of the important endogenous factors mobilizing intracellu-
lar calcium stores (89, 159). It is of interest to note that NADP™
and NAD™, which are essentially linked by NADKs, are the
precursors for generating NAADP and cyclic ADP-ribose, re-
spectively. Thus, it would be of interest to determine the roles
of NADKSs in the cyclic ADP-ribose and NAADP signaling
pathways. Diagrammatic presentation of the pathways by which
NAD and NADP affect calcium homeostasis is shown in
Fig. 5.

D. NAD and NADP in energy metabolism and
mitochondrial functions

NAD plays key roles in nearly all major aspects of energy
metabolism (29, 328). NAD can mediate cytosolic energy me-
tabolism through several pathways: NAD mediates glycolysis
by acting as the co-factors for the glycolytic enzyme GAPDH;
and NAD also modulates other important energy metabolism-
related reactions in cytosol, such as the lactate dehydrogenase-
catalyzed lactate—pyruvate conversions. In addition, cytosolic
NADH can also affect mitochondrial oxidative phosphorylation
due to the NADH shuttling from cytosol to mitochondria.

There are multiple mechanisms by which NAD can mediate
mitochondrial energy metabolism: a) NADH is one of the ma-
jor electron donors for the electron transport chain; b) NAD*
is the coenzyme for the three rate-limiting enzymes in TCA cy-
cle (193); ¢) AIF is a NADH oxidase that plays an important
role in the mitochondrial complex I activity (202); d) NADH
could directly interact with and inhibit voltage-dependent an-
ion channels, that is a component of MPT pores and controls
the transport of small molecules across mitochondrial mem-
branes (104); e) recent studies have demonstrated that NAD™
-dependent sirtuins can deacetylate the active lysine residues of
acetyl-CoA synthetases, thus activating the enzymes, which

could mediate the conversion of free acetate to acetyl-CoA (114,
257, 273). In mammalian cells it appears that SIRT1 can
deacetylate and activate acetyl-CoA synthetase 1 in cytosol
(114), while SIRT3 can deacetylate and activate acetyl-CoA
synthetase 2 in mitochondria (114, 257); and f) the
NADH/NAD ™ ratio is one of the modulators of MPT pore open-
ing (352), which can significantly influence mitochondrial
memebrane potential. It has been suggested that maintainance
of mitochondrial pyridine nucleotides in reduced redox state
mediates the capacity of bcl-2 overexpression to block oxida-
tive stress-induced MPT (132).

Studies suggest that under certain conditions the reducing
equivalents of cytosolic NADH could be directly transferred to
the oxygen in the mitochondria with the generation of electro-
chemical membrane potential, which is mediated by cytosolic
cytochrome ¢ and mitochondrial cytochrome oxidase (156,
189). In the model proposed by the researchers, the high en-
ergy electron from NADH is transferred to cytoslic cytochrome
¢ by the NADH-cytochrome b5 oxido-reductase complex on ex-
ternal mitochondrial membrane; and the cytochrome c transfers
the electron to mitochondrial complex IV (cytochrome oxidase)
at the respiratory contact sites. Subsequently, the molecular
oxygen is reduced with generation of electrochemical mem-
brane potential. This process may occur at the early stage of
apoptosis when significant amount of cytochrome c is released
into cytosol, which may lead to additional energy generation
for apoptosis. Moreover, this process may also occur under
physiological conditions, since there may be constitutive release
of cytochrome ¢ from mitochondria to the cytosol (155). This
process may not only contribute to removal of excessive cy-
tosolic NADH, but also promote cell survival when the first
three respiratory complexes are impaired.

Because transhydrogenase catalyzes the formation of
(NADPH + NAD™) from (NADP* + NADH) by utilizing the
mitochondrial transmembrane electrochemical H™ gradient
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(127, 246), mitochondrial NADPH generation could be linked
with oxidative phosphorylation via transhydrogenase. It is pos-
sible that reversal of the transhydrogenase-catalyzed reactions
may utilize NADPH to produce an increase in the proton gra-
dient across the mitochondrial membranes. However, the rela-
tively low free energy available for the reversal reaction sug-
gests that the contribution of the reaction to the proton gradient
is transient and insignificant (246). It was also hypothesized
that IDPm may operate in reverse mode [i.e., in the mode of
generating isocitrate and NADP* from a-ketoglutarate and
NADPH, which may contribute to fine regulation of TCA cy-
cle activity (253)]. This hypothesis has been supported by the
studies demonstrating the reversal of the IDPm in liver (80) and
heart (61), but not by a study applying a specific inhibitor of
IDPm (253). Future studies are warranted to elucidate the rela-
tionships among transhydrogenase, mitochondrial NADPH
generation, TCA cycle activity and mitochondrial oxidative
phosphorylation. The potential significance of the studies has
been highlighted by the findings suggesting that transhydroge-
nase deficiency could mediate the impairments of glucose-in-
duced insulin release in C57BL/6] mice (284).

A recent study has indicated that IDPc mediates glucose-in-
duced increases in pyruvate cycling and insulin secretion in pri-
mary rat islets (242), suggesting significant effects of IDPc on
pyruvate-related energy metabolism. The finding that disrup-
tion of the NADH kinase POSS5 in yeast dramatically increased
the mitochondrial mutation rate (264) suggests a critical role of
NADPH in protecting the integrity of mitochondrial DNA.

E. Effects of NAD and NADP on gene expression

NAD may affect gene expression through several pathways.
NADH mediates the activity of the corepressor carboxyl-ter-
minal binding protein—-a transcriptional factor important for
cell cycle regulation, development, and transformation (342);
and NADH also modulates the activities of Clock:BMALI and
NPAS2:BMALI that are heterodimeric transcription factors
controlling circadian clock-associated gene expression (245).

A number of studies have indicated important roles of PARP-
1 in gene expression. For example, it has been found that both
DNA topoisomerase Ila-dependent, transient double-strand DNA
breakage and subsequent PARP-1 activation is required for sig-
nal-dependent activation of gene expression by nuclear receptors
and multiple other DNA-binding transcriptional factors (131,
175). Increasing evidence has suggested that PARP-1 could me-
diate gene expression through a number of mechanisms: first,
PARP-1 can profoundly affect multiple transcriptional factors, in-
cluding AP-1, AP-2, NF«B, p53, cAMP-responsive element-bind-
ing protein, Sry, and HIF1 (13, 111, 141, 170, 171, 186); second,
PARP-1 binding on necleosomes can reversibly modulate chro-
matin structure in a NAD*-dependent manner: PARP-1 binding
on necleosomes can promote the formation of transcriptionally re-
pressed, compact chromatin structure, while PARP-1 auto-
poly(ADP-ribosyl)ation in the presence of NAD™ produces dis-
sociation of PARP-1 from chromatin, leading to the formation of
transcriptionally active, decondensed chromatin structure (140,
141); third, PARP-1-produced poly(ADP-ribosyl)ation of histone
H1 could also produce chromatin de-condensation (74, 232);
fourth, PARP-1 can NAD*-dependently silence RNA polymerase
[I-dependent transcription (197, 217, 218); fifth, PARP-1 itself
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can directly affect gene expression by binding the promoters of
certain genes such as iNOS and CXC ligandl (8, 334); sixth,
PARP-1 could affect gene expression by modulating DNA methy-
lation (236, 335-337); and seventh, PARP-1-dependent NAD™
consumption could affect gene expression by influencing the
NAD*-dependent sirtuins that can modulate the activities of mul-
tiple transcriptional factors (200). The complexity of the mecha-
nisms underlying the effects of PARP-1 on gene expression has
been further indicated by the findings that PARP-1 can affect tran-
scriptional factors through multiple mechanisms, such as direct
protein—protein interactions (51, 118), modulations of the ex-
pression of transcriptional factors (111, 187), and poly(ADP-ri-
bosyl)ation of transcriptional factors (170, 217).

Cumulative evidence has indicated increasingly extensive
and important roles of PARP-1-mediated gene expression in
various biological and pathological processes, such as inflam-
mation and carcinogenesis (8, 111, 118, 141, 187). For exam-
ple, a recent study has suggested that PARP-1 mediates nitric
oxide-dependent negative feedback regulation of the expression
of iNOS gene (334): PARP-1 appears to be a novel trans-acti-
vator of the iNOS promoter; and NO can inhibit iNOS expres-
sion by nitrosylating PARP-1. Figure 6 provides diagrammatic
presentation of the pathways by which PARP-1 affects gene ex-
pression.

A number of studies have suggested that sirtuins can also
mediate gene expression through multiple pathways: First, both
yeast Sir2 and mammalian SIRT1 can produce histone hy-
poacetylation and gene repression by promoting the formation
of heterochromatin—-a tightly packed form of chromatin (200);
second, SIRTI-produced deacetylation of multiple transcrip-
tional factors, including p53 (179), FOXO transcriptional fac-
tors (209, 214), NF«kB (317), p73 (75), and Tat (222), can me-
diate the transcriptional activities of these factors; third, SIRT7
is an activator of RNA polymerase I-mediated transcription
(92); and fourth, SIRT1 has been found to inhibit RNA poly-
merase I-mediated transcription by deacylating TAF;68 (212).
A rapidly growing body of evidence has indicated that the ef-
fects of sirtuins on gene expression can significantly affect var-
ious biological processes, including aging, cell death, carcino-
genesis, and stress resistence (200).

Since ROS can mediate gene expression by modulating in-
tracellular redox state (262), it is conceivable that NADPH
could affect gene expression by its profound effects on both
cellular antioxidation and ROS generation. An interesting study
reported that NOX4 is localized in the nucleus of human um-
bilical vein endothelial cells, which appears to regulate gene
expression by generating superoxide (153). This finding pro-
vides a novel mechanism by which NADPH can affect gene ex-
pression: The NADPH oxidase in the cell nucleus may modu-
late gene expression by initiating redox signaling. It has also
been found that the endothelial NADPH oxidase can be acti-
vated by angiogenic factors such as VEGF (289). The NADPH
oxidase-generated ROS can activate various redox signaling
pathways, resulting in angiogenesis-related gene expression,
which may mediate postnatal angiogenesis in vivo (289).

F. NAD and NADP in immunological functions

It has been found that CD38-produced cyclic ADP-ribose
plays a critical role in inflammation and innate immune re-
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FIG. 6. Pathways by which PARP-1 affects gene expression.

PARP-1 can affect gene expression by influencing a number of

transcriptional factors, or by direct binding to the promoters of certain genes. PARP-1 can also affect gene expression by produc-
ing chromatin de-condensation or compaction. The enzyme can further influence gene expression by silencing RNA polymerase 1I-
dependent transcription, or by modulating DNA methylation. Moreover, PARP-1-dependent NAD™ consumption could affect gene
expression by influencing the NAD*-dependent sirtuins that can modulate the activities of several transcriptional factors.

sponses by mediating neutrophil chemotaxis to bacteria
chemoattractants (225, 226). A recent study also indicated
cyclic ADP-ribose as a second messenger mediating the
lipopolysaccharide-induced proliferation of human peripheral
blood mononuclear cells (43). Many studies have further dem-
onstrated important roles of PARP-1 in inflammatory responses,
due to its major effects on NFkB (296). It has also been re-
ported that NADH can dose-dependently induce IL-6 release
from human peripheral blood leukocytes (213). Recent studies
have suggested that the ecto-ARTS can produce mono-ADP-ri-
bosylation of P2X; receptors by consuming extracellular
NAD™, leading to opening of P2X; receptors. The P2X; re-
ceptor opening can produce death of Treg cells—-the cells that
can inhibit the activation of other types of T cells (17).

PBEF was isolated as a presumptive cytokine that can en-
hance the maturation of B-cell precursors in the presence of
stem cell factor and IL-7 (248). It has been demonstrated that
PBEF is the same protein as Nampt—-a key enzyme in the
mammalian salvage pathway for NAD™ synthesis (241), sug-
gesting that a key NAD*-synthesizing enzyme can produce cy-
tokine-like effects when acting extracellularly. It is of interest
to further determine if the cytokine-like activity of PBEF might
be accounted for by the nicotinamide mononucleotide-synthe-
sizing capacity of Nampt (238).

The NADPH oxidase in phagocytes plays critical roles in in-
nate immunity by generating microbicidal ROS (167). Increas-
ing evidence has suggested that several other members of the
Nox family of oxidases are also involved in host defense (167).
Important roles of NADPH oxidase in the inflammation under
several pathological conditions have been indicated by the find-
ings that inhibition of NADPH oxidase can block inflammatory
processess (157, 239). The interactions between NAPDH oxi-
dase and inducible NOS (iNOS) play key roles in inflamma-

tion-induced cytotoxicity: iNOS is a Ca?"-independent and
transcriptionally regulated isoform of NOS. Activated iNOS can
generate large toxic amount of NO in a sustained manner (109).
The NADPH oxidase-generated superoxide can rapidly inter-
act with the iNOS-generated NO to produce peroxynitrite that
mediates the toxicity of NO by producing DNA damage, in-
hibiting mitochondrial respiration and activating PARPs (110,
125). Multiple studies have indicated that NADPH oxidase and
iNOS can produce synergistic effects in inducing death of sev-
eral types of cells (38, 169).

A recent study has demonstrated that the NADPH oxidase
NOX2 is recruited to the early phagosomes of dendritic cells,
which produces alkalinization of the phagosomal lumen by gen-
erating low levels of ROS (251). Through this process NOX2
confers dendritic cells the ability to function as specialized
phagocytes for processing antigens rather than killing patho-
gens (251). It has also been found that the absence of one of
the components of NADPH oxidase is causative to chronic
granulomatous disease—-an inherited immune deficiency dis-
ease (21). Diagrammatic presentation of the mechanisms by
which NAD and NADP affect immunological functions is
shown in Fig. 7.

G. NAD and NADP in vascular activity

Angiotensin II plays key roles in regulating vascular activ-
ity, which produces multiple vascular effects through NADPH
oxidase-derived ROS (120). Recent studies have suggested that
NADH/NAD™ ratios and NADPH oxidase play critical roles in
two of the important models for the oxygen sensing in hypoxic
pulmonary vasoconstriction (304). There are also studies sug-
gesting that NADPH mediates the differential responses of pul-
monary artery and coronary artery to hypoxia (307): The hy-
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poxia-induced pulmonary artery contraction could be mediated
by a mechanism associated with a decrease in the basal levels
of NADPH oxidase-generated peroxide; while hypoxia-induced
coronary artery dilation could be mediated by a decrease in the
basal levels of NADPH.

Mounting evidence has suggested that NAD and NADP me-
tabolism also plays significant roles in vascular damage under
various pathological conditions. For example, a PARP inhibi-
tor was found to decrease cardiopulmonary bypass-induced
mesenteric vascular dysfunction by improving hemodynamics,
decreasing neutrophil adhesion, and restoring nitric oxide pro-
duction (12); and the C242T CYBA polymorphism of NADPH
oxidase was found to be associated with essential hypertension
(205).

H. NAD and NADP in carcinogenesis and
cancer treatment

Selective inhibition of NAD™ synthesis has been shown to in-
duce apoptosis of tumor cells (117). Because PARP-1 plays crit-
ical roles in regulating DNA repair, genomic stability, and cell
cycle progression (296), many studies have been conducted to
determine the roles of PARP-1 in carcinogenesis (103). It has
been found that PARP inhibitors can restore the sensitivity of re-
sistant tumors to topoisomerase I inhibitors or methylating agents
(103). Because telomerases and telomere play significant roles
in carcinogenesis (112), NAD"-dependent tankyrases—-the en-
zymes that regulate telomerase activity (259, 260)—-may affect
carcinogenesis by influencing telomere.

Increasing evidence has indicated that sirtuins may be in-
volved in carcinogenesis and cancer treatment. A recent study
suggests that cancer cells, but not noncancerous cells, may re-
quire SIRT1 for survival (93): decreased levels of SIRT1 by
RNA silencing selectively induced apoptosis and/or growth ar-
rest in human epithelial cells, while the RNA silencing did not
affect normal human epithelial cells. Another recent study also
indicated that SIRT1 inhibition by tumor suppressor HIC1 in

NADH

FIG. 7. Pathways by which NAD and
NADP could affect immunological
functions. NAD™-dependent  poly
(ADP-ribose) polymerase-1 (PARP-1)
plays a significant role in immunologi-
cal functions due to its close relation-
3 ships with NFxB. NAD¥-dependent
generation of cyclic ADP-ribose (cADPR)
by CD38 can also mediate the cell sig-
naling in immune cells. Ecto-mono-
ADP-ribosyl transferases (ARTs) can
induce Treg cell death by using NAD™
to produce mono-ADP-ribosylation of
P2X receptors (ADP-R-P2X-R). NADPH
oxidase is responsible for the ROS burst
in phagocytes. NADH may also affect
the immune system by inducing cyto-
kine release from peripheral leukocytes.
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human MCF-7 cancer cells mediates DNA damage-induced
apoptosis by both producing p53 acetylation and suppressing
the antiapoptotic factor bcl-2 (52).

It has been indicated that the thioredoxin system, that con-
sists of NADPH, thioredoxin, and thioredoxin reductase, plays
an important role in carcinogenesis and invasive phenotype of
cancer (16). Because NAD and NADP can profoundly affect
cell death and various biological processes including gene ex-
pression and signal transduction, future studies may further elu-
cidate important roles of NAD and NADP in carcinogenesis
and cancer treatment.

1. NAD and NADP in aging

Accumulating evidence has suggested that NAD could be a
crucial factor in the aging process by regulating sirtuins, PARP-
1, tankyrases, and oxidative stress. It has been indicated that
Sir2 is a key enzyme mediating the life span of yeast and C-el-
egans (35). The study of Lin et al. suggested that calorie re-
striction could modulate Sir2 activity, thus extending the life-
span of yeast by decreasing NADH levels (173). However,
Anderson et al. (10) have suggested an intriguing alternative
mechanism by which calorie restriction and Sir2 mediate the
lifespan of yeast: PNC/ (pyrazinamidase/nicotinamidase 1) en-
codes an enzyme that converts nicotinamide to nicotinic acid,
which can lead to Sir2 activation by depleting the Sir2 inhibi-
tor nicotinamide. It was shown that PNC/ is a novel longevity
gene that is both necessary and sufficient for the lifespan ex-
tension by calorie restriction, which appears to be mediated by
PNCI-dependent activation of Sir2. It has also been found that
deficiency of SIRT6, a human homolog of Sir2, produces ag-
ing-like phenotype and genomic instability in mice (208). A re-
cent study has suggested that the gene encoding the key NAD*-
synthesizing enzyme Nampt is a novel longevity gene, which
can significantly extend the replicative lifespan of human cells
by increasing SIRT1 activity, leading to inhibition of age-de-
pendent p53 expression and increased pS3 degradation (293).
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Telomere and telomerases have been indicated as mediators
of cellular aging (36). NAD ™ may also affect the aging processes
through NAD"-dependent tankyrases, because tankyrases me-
diate telomerase activity (270). It has also been reported that
PARP activities of mononuclear blood cells are strongly corre-
lated with the longevity of thirteen mammalian species, which
may be accounted for by the DNA repair function of PARP-1
(45, 106). A role of PARP-1 in aging has been further suggested
by the finding that PARP-1 inhibits the catalytic activities of
the protein of Werner syndrome, a human disease of premature
aging (298, 299). Moreover, due to the significant roles of mi-
tochondrial impairments in the aging processes (47, 265), it is
conceivable that NAD may further influence aging by its pro-
found effects on mitochondrial activities.

Due to the important role of oxidative stress in aging (113,
272, 321), it is conceivable that NADPH may play significant
roles in aging due to the effects of NADPH on both antioxida-
tion and ROS generation. It has been reported that IDPc regu-
lates replicative senescence (139). There are also increased lev-
els of glycated IDP in IMR-90 cells and rat kidney during
normal aging (138). The glycation-mediated damage to IDP
may increase oxidative stress and contribute to aging-related al-
terations (138).

Seemingly paradoxically, the patients of glucose-6-phos-
phate dehydrogenase deficiency could have longer lifespan
(256), which might be accounted for by the decreased
NAPDH oxidase-dependent ROS generation resulting from
decreased NADPH generation. Future studies are needed to
further elucidate the roles of NADPH in both chronological
and replicative senescence, and to search for the potential
strategies to increase longevity by manipulating NADPH me-

NADPH «———— NADP* «——NAD*

NADPH
oxidase
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tabolism. Figure 8 provides diagrammatic presentation of the
pathways by which NAD and NADP could affect the aging
process.

IV. NAD AND NADP IN CELL DEATH

A. PARP-1 and NAD in cell death

Oxidative stress has been indicated as a key mediator of isch-
emic brain damage (49, 50), Parkinson’s disease (PD) (24, 308,
321), Alzheimer’s disease (AD) (137, 199, 204, 319, 346) and
many other diseases (113). Excessive PARP-1 activation ap-
pears to mediate cell death induced by oxidative stress under
many conditions (87, 341). There has also been compelling ev-
idence indicating that PARP-1 activation plays a key role in
ischemic brain injury: both pharmacological and genetic inhi-
bition of PARP-1 can profoundly decrease infarct formation in
animal models of brain ischemia (87, 88), and increased PARP
activities have been found in animal models of cerebral isch-
emia (88, 283) and in human brains after cardiac arrest (176).

Evidence suggests that PARP-1 may also mediate the neu-
ronal injury in PD and AD: PARP-1 activation has been shown
to mediate the neuronal death induced by MPTP, a model toxin
for PD, both in vitro (66, 185) and in vivo (126, 184, 234). In-
creased nuclear PARP activity has also been found in the brains
of AD patients (48, 126). A recent study reported that PARP-
1 activation mediates the B-amyloid-induced neuronal death,
which is an in vitro model of AD (91, 119). Cumulative evi-
dence has further indicated that PARP-1 activation is an im-
portant pathological factor in traumatic brain injury (158), hy-
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FIG. 8. Potential pathways by which NAD and NADP can affect the aging process.
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poglycemic brain injury (277), diabetes (229), and shock and
inflammation (279, 296). PARP-1 has become a valuable ther-
apeutic target for multiple diseases (230, 279, 296).

Our studies have provided direct evidence demonstrating that
NAD™ depletion is a key step mediating PARP-1-induced cell
death (5, 326). Several studies have also indicated that MPT
(5) and apoptosis-inducing factor (AIF) translocation (332) link
NAD™ depletion to cell death. Our studies have further sug-
gested that NAD™ depletion could induce mitochondrial im-
pairments by producing glycolytic inhibition (326), which
would reduce pyruvate supply to TCA cycle (325). This sug-
gestion has been supported by the findings of us and other re-
searchers, which show that pyruvate treatment after PARP-1
activation can profoundly decrease PARP-1-induced impair-
ments of energy metabolism and cell death in cell cultures, brain
slices, and animal models of diseases (278, 325, 338).

Several recent studies have suggested novel mechanisms un-
derlying PARP-1 cytotoxicity. It was reported that SIRT1 is a
key link between NAD™ depletion and cell death (231). A lat-
est study has further indicated interactions between PARP-1 and
SIRTI1: SIRT1 deficiency produces significant increases in
PARP-1 activity, leading to AIF-mediated cell death (149). Sev-
eral studies have also indicated that the ADP-ribose generated
by PARP-1/PARG can produce TRPM2 opening, leading to in-
creased intracellular calcium concentrations and cell death (90,
91, 314). However, two recent studies suggested that PAR, in-
stead ADP-ribose monomers, mediates PARP-1-induced AIF
translocation and cell death (11, 333).

Increasing evidence has indicated multiple protein kinases, in-
cluding extracellular signal-regulated kinases (ERKSs) and c-Jun
N-terminal kinases (JNKs), could contribute to PARP-1-medi-
ated cell death (59, 136, 310, 343). Xu et al. reported that JNK,
particularly JNK1, is required for PARP-1-induced mitochondr-
ial impairments and subsequent cell death (6, 310). A recent study
has further indicated that JNK1 could activate PARP-1 by di-
rectly phosphorylating the enzyme (343). It has also been indi-
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cated that ERK1/2 induces PARP-1 activation by directly phos-
phorylating the enzyme (136). The latest study by Cohen—Ar-
mon et al. reported that phosphorylated ERK2 can induce DNA
damage-independent PARP-1 activation by directly interacting
with the enzyme (59). Figure 9 provides diagrammatic presenta-
tion of the mechanisms for PARP-1-mediated cell death.

There are several possibilities underlying the seeming diver-
sity of the mechanisms underlying PARP-1 toxicity. First, while
the reported mechanisms for PARP-1 toxicity seem diverse, fu-
ture studies may expose a common pathway linking these mech-
anisms. Second, multiple factors may form a detrimental net-
work that leads to PARP-1-initited cell death, thus inhibition
of any one of the major components of the network may block
PARP-1 toxicity. Third, there may be differential PARP-1-me-
diated cell death cascades that are selectively activated de-
pending on cell types and intensities of insults. Fourth, we have
demonstrated that inclusion of such nutritional factors as pyru-
vate or a-ketoglutarate can profoundly affect PARP-1 toxicity
(325, 338). Thus, the differential nutritional compositions of the
experimental media in different studies may contribute to the
variability of the experimental outcomes (327).

Recent studies have suggested that other PARPs could also
mediate cell injury. It has been found that overexpression of
tankyrase 2 can produce rapid cell death (182). Tankyrase 1
has also been shown to interact with both Mcl-1L (myeloid
cell leukemia-1 long) and Mcl-1S (myeloid cell leukemia-1
short) proteins, which are anti-apoptotic and pro-apoptotic
bcl-2 family proteins, respectively (22). Tankyrase 1 over-
expression can antagonize both Mcl-1L-mediated cell sur-
vival and Mcl-1S-induced cell death (22). Intriguingly,
PARP-2 was detrimental in focal brain ischemia, while it was
beneficial in a model of global ischemia (181). A recent study
has further suggested that PARP-2 mediates the survival of
CD4*CD8" double-positive T cells during thymopoiesis
(316). It is warranted to further determine the interactions
among PARPs under both physiological and pathological

FIG. 9. Mechanisms of
poly(ADP-ribose) polymerase-1
(PARP-1) cytotoxicity. Exces-
sive PARP-1 activation triggered
by single-strand DNA (ssDNA)
can induce NAD™ depletion, lead-
ing to glycolytic inhibition and
SIRT1 inhibition, which could
lead to mitochondrial permeability
transition, resulting in apoptosis-
inducing factor (AIF) transloca-
tion, ATP depletion, and subse-
quent cell death. ADP-ribose can
be generated by poly(ADP-ribose)
glycohydrolase (PARG) from
poly(ADP-ribose) (PAR), which
can induce TRPM2 receptor open-
ing, leading to increased intracel-
lular calcium concentration and
cell death. PARP-1 activation can
also activate c-Jun N-terminal ki-
nase (JNK) that can produce mito-
chondrial impairments and cell
death.
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conditions, and to elucidate the relationships between NAD
and PARPs in cell survival.

B. PARG in cell death

PARG mediates PAR catabolism in cells (77), which de-
grades PAR into ADP-ribose (243). PARG is an endo-exogly-
cosidase that exists in low abundance in cells, which appears
to play significant roles in regulation of gene expression, cell
cycle, and cell differentiation (84, 219, 287). A recent study re-
ported that in Drosophila PARG mediates Sir2-dependent si-
lencing and chromatin structure (285).

Cumulative evidence has implicated that PARG inhibition
may prevent PARP-1-mediated cell death by several mecha-
nisms (323, 324): First, PARP-1 can auto-poly(ADP-ribosyl)ate
itself, leading to PARP-1 auto-inhibition (74). Therefore, PARG
inhibition prevents removal of PAR from PARP-1, thus indi-
rectly inhibiting PARP-1 activation. Second, PARG inhibition
could block the rapid PAR turnover, thus preventing NAD* de-
pletion. Third, Ca?>*-Mg>"-dependent endonucleases (CME)
mediate DNA fragmentation in certain apoptotic cascades (39).
It has been found that CME can be poly(ADP-ribosy)lated, thus
being inhibited under physiological conditions (39, 311). Thus,
PARG inhibition can prevent removal of PAR from CME, lead-
ing to sustained CME inhibition. Fourth, several studies have
suggested that PARP-1/PARG activities can generate ADP-ri-
bose by hydrolyzing PAR, leading to activation of TRPM2 re-
ceptors and consequent cell death (90, 91, 314). Therefore,
PARG inhibition could also decrease cell death by blocking
ADP-ribose generation from PAR. Figure 10 provides dia-
grammatic presentation of the potential mechanisms underly-
ing the protective effects of PARG inhibition.

All of the in vitro and in vivo studies using various structurally
different PARG inhibitors, including GPI 16552 [N-bis-(3-phenyl-
propyl)9-oxo-fluorene-2,7-diamide] (178), GPI 18214 (100), gal-
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FIG. 10. Potential mechanisms by which PARG inhibition
may decrease PARP-1-mediated cell death. PARG inhibi-
tion may be cytoprotective by prolonging auto-poly(ADP-ribo-
sylation)-produced PARP-1 inhibition, by slowing poly(ADP-
ribose) (PAR) turnover, by blocking ADP-ribose generation, or
by maintaining poly(ADP-ribosylation)-produced inhibition of
Ca?*-Mg?*-dependent endonucleases (CME).
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lotannin, and nobotanin B (23, 121, 142, 323, 324), have sup-
ported the hypothesis that PARG may be a new target for de-
creasing oxidative cell death (71, 328): The PARG inhibitor gal-
lotannin and nobotanin B can decrease cell death induced by
various PARP activators in vitro (23, 121, 142, 323, 324); our lat-
est study has shown that intranasal gallotannin administration can
inhibit PARG and profoundly decrease ischemic brain injury and
AIF translocation in vivo (305); the PARG inhibitor GPI 16552
can also markedly reduce ischemic brain injury (178) and spinal
cord injury (72); and it was reported that the PARG inhibitor GPI
18214 is beneficial for septic shock-like syndrome (100) and in-
flammatory bowel disease (73).

In the cell culture studies in which PARG activity was de-
creased by PARG antisense oligonucleotides or PARG small
interference RNA, it was also found that PARG inhibition is
cytoprotective: Decreases of PARG levels by PARG antisense
oligonucleotides (46) or RNA silencing (37) led to reduced
PARP-1-mediated cell death. Of particular interest, a recent
study using a cell culture model that has increased PARG ac-
tivity has further suggested that PARG inhibition could be pro-
tective: The increased PARG activity was found to accelerate
NAD™ depletion and increase cell death (97).

However, the studies using PARG knockout mice have gen-
erated variable results: the mice that have genetic deletion of
the 110 kDa PARG isoform have significantly decreased spinal
cord injury (72) and ischemic damage of intestine (70) and kid-
ney (227) compared with wild-type mice. However, there are
also studies suggesting that genetic deletion of PARG leads to
detrimental effects (11, 68). Since increasing evidence has in-
dicated that PARG significantly affects gene expression and
other biological properties (84, 219, 287) and that the PARG
gene is closely associated with inner mitochondrial membrane
translocase 23 (TIM23) gene (198), attention should be paid to
the potential genetic alterations in the PARG knockout mice.
Indeed, it has been reported that in PARG knockout mice, there
are marked changes in the gene expression of cyclooxygenase
2 and heat shock protein 70 (68)—-two important proteins in
cellular functions and cell survival.

Based on the considerations of the available observations about
PARG in cell death, it is tempting to conclude that partial PARG
inhibition can be cytoprotective, whereas complete PARG inhi-
bition can be detrimental. Future studies using conditional PARG
knockout mice or more selective PARG inhibitors are warranted
to further elucidate the role of PARG in cell death.

C. NAD in apoptosis

In contrast to the extensiveness of the studies on PARP-1, a
mediator of programmed necrosis (350, 351), there have been
only insufficient number of studies on the roles of NAD in apop-
tosis. Several studies have suggested that NAD may be involved
in apoptosis: it was reported that selective inhibitors of NAD™
synthesis can induce apoptosis (117), and that NADH/NADPH
depletion is an early event in apoptosis (99). NAD may affect
apoptosis through several potential mechanisms: First, NAD
mediates cellular energy metabolism that is a critical factor de-
termining cell death modes; second, the NADH/NAD™ ratio is
a major index of cellular reducing power that affects MPT—-
a mediator of apoptosis under many conditions (352); third,
NAD™ levels mediate the activity of caspase-dependent en-
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donuclease DFF40—an executioner of DNA fragmentation in
certain apoptotic cascades (128); and fourth, NAD*-dependent
sirtuins may mediate apoptosis (317). Future studies on this
topic are critical for our comprehensive understanding about
the roles of NAD in cell death.

D. NAD in axonal degeneration

Axonal degeneration is one of the major pathological changes
in many neurodegenerative diseases (60). The Wallerian degen-
eration slow [WId(S)] mouse model has been valuable for inves-
tigating the mechanisms underlying axonal degeneration (60). The
mutation of WId(S) mice leads to overexpression of a chimeric
protein—WId(S) protein consisting of the key NAD*-synthesiz-
ing enzyme NMNAT-1 and the ubiquitin assembly protein Ufd2a,
which can lead to delay of injury-induced axonal degeneration.
Recent studies have suggested that the NMNAT-1 in the W1d(S)
protein could mediate the protective effects of the Wallerian mu-
tation (14, 302): one study suggested that the increased NMNAT-
1 expression produces its effects by affecting SIRT1, a member
of sirtuins (14). However, another study reported that NMNAT-
1 may affect axonal degeneration by preventing NAD™ loss in
degenerating axons (302). A later study has further suggested that
NMNAT-1 activity is required for the protective effects of W1d(S)
protein (129). However, there are also studies suggesting that NM-
NAT-1 itself may be insufficient to account for the protective ef-
fects of the WId(S) protein (62, 340).

E. AIF and GAPDH in cell death

In addition to PARP-1, the other two NAD-dependent pro-
teins—-AIF (202) and GAPDH (58, 115)—-are also important
mediators of cell death. GAPDH has been established as a me-
diator of apoptosis under many conditions: GAPDH binds Siah
which is then translocated into nucleus to mediate apoptosis
(58, 115, 116, 252).

AIF is a NADH oxidase, which appears to be both an im-
portant pro-death factor and an important pro-survival factor
(76, 174, 202). Translocation of AIF from mitochondria to the
nucleus has been indicated as mediators of caspase-independent
apoptosis (202) and PARP-1 cytotoxicity (332). However, AIF
also plays a significant role in mitochondrial complex I activ-
ity (290). Genetic deletion of AIF has been shown to produce
skeleton muscle atrophy, dilated cardiomyopathy, and neu-
rodegeneration (202). There has been evidence indicating that
prevention of NAD* depletion can block PARP-1-mediated nu-
clear translocation of AIF (5). This finding, together with the
fact that AIF is a NADH oxidase, suggests that NAD could be
an important regulator of AIF. Our latest study has shown that
aurintricarboxylic acid—-a CME inhibitor—-can nearly abol-
ish DNA alkylating agent-induced nuclear condensation in as-
trocytes, despite nuclear translocation of AIF (unpublished find-
ing). This result suggests that, at least under certain conditions,
nuclear AIF translocation itself may be insufficient to induce
chromatin condensation.

F. NADP in cell death

There are studies suggesting the protective roles of IDPm in
defending against cell apoptosis induced by various insults:

YING

IDPm is involved in cell defense against cadmium-induced
apoptosis (139); administration with oxalomalate—-a compet-
itive inhibitor of IDPm—-leads to increased ionizing radiation-
induced apoptosis in mice (161); and modulation of IDPm
activity in HEK293 cells also significantly affects high glucose-
induced apoptosis (267).

Of particular interest, a large number of studies have indi-
cated that NADPH oxidase plays a key role in cell death under
both in vitro and in vivo conditions (2). For example, it was re-
ported that the NADPH oxidase activation in astrocytes medi-
ates (3-amyloid-induced neuronal death (1); NADPH oxidase
also plays a key role in the ROS generation in the neurons that
are exposed to oxygen—glucose deprivation—-an in vitro
model for brain ischemia (3); and genetic or pharmacological
inhibition of NADPH oxidase is protective against ischemic
brain injury (300). A recent study also reported that ischemia
induced NOX2 expression mainly at the nucleus of cardiomy-
ocytes, which appears to mediate ischemia-induced apoptosis
(196). Due to the critical roles of oxidative stress in cell death
(247), it is expected that there would be an increasing number
of studies indicating significant roles of NADPH in cell death.

V. THERAPEUTIC POTENTIAL OF NAD
AND NADP

A. Therapeutic potential of NAD" precursors

A number of in vitro studies have shown that nicotinamide
can produce cytoprotective effects against various insults, in-
cluding oxidative stress and oxygen—glucose deprivation (57,
168). Nicotinamide administration has also been shown to de-
crease tissue injury in several animal models of diseases, in-
cluding cerebral ischemia (19, 20, 203, 312), spinal cord injury
(40), PD (210), and multiple sclerosis (133). Nicotinamide
could produce cytoprotective effects by multiple mechanisms,
including inhibition of PARP-1 (145, 296), restoration of
NAD™ levels (145, 312), activation of Aktl (56), and blockage
of mitochondrial permeability transition and mitochondrial de-
polarization (55, 168). However, since it is also an inhibitor of
sirtuins (18), nicotinamide may produce detrimental effects on
cell survival and longevity.

A recent study reported that nicotinamide riboside—-a newly
discovered NAD™ precursor in eukaryotes—-can promote Sir2-
dependent gene silencing and markedly extend the replicative
lifespan of yeast without calorie restriction (28). It was further
found that the beneficial effects of nicotinamide riboside are
mediated by the capacity of nicotinamide riboside to increase
NAD™ synthesis (28). This study suggests a novel approach to
increase NAD™ synthesis and extend life span of cells.

B. Therapeutic potential of NAD™

The recent studies by our research group have provided the
first evidence indicating that treatment with NAD™ can abol-
ish PARP-1-induced astrocyte death (5, 326, 327, 345). It was
also shown that NAD™ treatment can decrease PARP-1-induced
myocyte death (231). These results raise the possibility that
NAD™ may be used in vivo to decrease PARP-1-mediated tis-
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sue injury. This possibility has been further enhanced by the
observations that NAD™ levels are significantly decreased by
a PARP-mediated mechanism in the brains that underwent isch-
emia/reperfusion (77).

Based on this information, we have used a rat model of tran-
sient focal ischemia to test our hypothesis that administration
with NAD™ can reduce ischemic brain damage (277): we found
that intranasal delivery of NAD™ at 2 h after ischemic onset
decreased infarct formation by up to 87% and significantly at-
tenuated ischemia/reperfusion-induced neurological deficits
(Fig. 11). In contrast, intranasal delivery of nicotinamide at the
same dose did not reduce ischemic brain damage. These results
provide the first in vivo evidence that NAD* metabolism is a
new target for treating cerebral ischemia, and that NAD™" ad-
ministration may be a novel strategy for decreasing ischemic
brain injury.

There is evidence implicating that NAD* administration may
decrease brain injury in not only cerebral ischemia, but also
multiple other diseases (331): pathological roles of PARP-1
have also been implicated in many diseases such as diabetes,
PD, and AD (329). Since NAD™ treatment provides the most
profound protection against PARP-1-mediated cell injury in cell
culture studies, NAD* administration might reduce the cell in-
jury in these diseases at least partially by decreasing PARP-1
toxicity. Our latest study has suggested that intranasal NAD™
administration might also decrease traumatic brain injury (330),
which supports our proposal that NAD™ may be used to treat
multiple diseases (331).

NAD™ may have distinctive merits as a cytoprotective agent.
In vitro studies have shown that NAD™ can produce greatest
protective effects against PARP-1 cytotoxicity (5, 326), and
NAD™ is also protective even when applied at 3-4 h after
PARP-1 activation, suggesting that NAD* administration may
have a long window of opportunity in decreasing tissue injury.
In addition, NAD™* may further decrease cell death by other
pathways, such as enhancing sirtuin activities and energy me-
tabolism.

C. Therapeutic potential of NADH

Several studies have reported beneficial effects of NADH ad-
ministration in treating PD (34, 152), which may be partially
explained by the capacity of NADH to increase bioavailability
of plasma levodopa. NADH administration can also improve
cognitive functions (78), suggesting the potential of NADH for
treating AD patients. Our recent studies have provided direct
evidence that NADH treatment can significantly decrease
PARP-1-mediated cell death (345), which further raises the pos-
sibility that NADH may be used to treat PARP-1-associated ill-
nesses.

FIG. 11. Intranasal NAD ' administration can

profoundly decrease ischemic brain injury in a I'R

rat model of brain ischemia. The infarct size

of the rats that underwent ischemia/reperfusion

(I/R) (upper panel) was significantly larger than /R + NAD"

that of the rats that underwent I/R and received
intranasal administration with NAD™ (lower

195

D. Therapeutic potential of modulations of
NADPH oxidase

Because NADPH can act as either a ‘good guy’ or a ‘bad
guy’ in cellular antioxidation systems, it could be important for
cell survival to maintain NADPH as a ‘good guy’. Particularly
since NADPH oxidase can play critical pathological roles in
multiple diseases, it is of importance to modulate NADPH-re-
lated properties to decrease the detrimental effects of NADPH
in the diseases. There could been several strategies for miti-
gating NADPH oxidase activity: First, to directly inhibit
NADPH oxidase by using NADPH oxidase inhibitors; second,
to indirectly inhibit NADPH oxidase by manipulating the in-
tracellular modulators of the enzyme, such as the small guano-
sine triphosphatase Rac and protein kinase C (26, 124, 288);
third, to inhibit excessive generation of NADPH by modulat-
ing the multiple NADPH-generating reactions; and fourth, to
maintain the activities of NADPH-consuming enzymes such as
glutathione reductase so as to ensure efficient NADPH flux
through these pathways, thus preventing excessive NADPH
supply to NADPH oxidase.

VI. CONCLUSIONS

Based on the above discussion, it appears that the classical
paradigm regarding the biological functions of NAD and NADP
is too narrow to generalize the growing functions of these mol-
ecules. It is tempting to propose that a novel paradigm about
the biological functions of NAD and NADP may be emerging:
NAD and NADP could be the fundamental common mediators
of nearly all major biological activities, including mitochondr-
ial function, energy metabolism, calcium homeostasis, antiox-
idation/generation of oxidative stress, gene expression, im-
munological functions, aging, and cell death. Selected from the
information reviewed above regarding the biological functions
of NAD and NADP, the following pieces of information could
serve as the highlights for supporting the emerging new para-
digm: In addition to the established pivotal roles of NAD in mi-
tochondrial functions and energy metabolism, cyclic ADP-ri-
bose and multiple other molecules that are generated from NAD
and NADP could be the essential regulators of calcium ho-
meostasis. NAD and NADP also play key roles in both an-
tioxidation and ROS generation: NADPH is an essential com-
ponent in cellular antioxidation systems; and the NADH-
dependent ROS generation from the electron transport chain
and the ROS generation by NADPH oxidase are two key mech-
anisms of ROS generation. NAD and NADP appear to medi-
ate cell death by modulating several key factors in cell death,

panel). As shown in the photographs, the white-colored tissues are the infarcted tissues.
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such as MPT, energy state, and the activities of the NAD- and
NADP-dependent enzymes, including PARP-1, GAPDH, AIF,
and NADPH oxidase. Furthermore, in addition to the major ef-
fects of NAD and NADP on several factors that could play key
roles in senescence, including oxidative stress, mitochondrial
functions, and telomere metabolism, NAD-dependent sirtuins
have emerged as a mediator of the aging process; and the genes
encoding the enzymes involving in NAD" metabolism, in-
cluding PNCI (10) and the gene encoding Nampt (293), appear
to be novel longevity genes.

Growing evidence has also suggested a novel paradigm for
the metabolism of NAD and NADP, which consists of the fol-
lowing major concepts: first, NAD and NADP can be metabo-
lized by many enzymes to generate multiple bioactive mole-
cules, such as cyclic ADP-ribose, ADP-ribose, poly
(ADP-ribose), NAADP, and O-acetyl-ADP-ribose; second,
there are NAD*-synthesizing and NAD " -catabolizing enzymes
in not only the nucleus, but also in other subcellular organelles
including the Golgi complex and mitochondria; third, extracel-
lular NAD™ can be metabolized by such ecto-enzymes as ecto-
ARTSs or CD38 to produce biological effects (33); and NAD™-
synthesizing processes might also be catalyzed extracellularly
by Nampt (238); fourth, NAD can be transported across the
plasama membranes of certain cell types; fifth, there are close
interactions among the key enzymes in NAD and NADP me-
tabolism, such as the interactions between NMNAT-1 and
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PARP-1; and sixth, at least in yeast there are such novel meta-
bolic pathways of NAD and NADP as the pathways mediated
by NADH kinase and acetaldehyde dehydrogenase. Figure 12
provides a diagrammatic overview about the metabolism and
the biological functions of NAD and NADP.

As proposed in previous articles (328, 329), NAD, together
with ATP and Ca?", may be the most fundamental components
in life which mediate nearly all of the key biological processes
(328, 329). The close interactions among these components may
constitute a ‘Central Regulatory Network’ in life (329). The
highly extensive functions of these seemingly simple molecules
and ions may be important factors underlying the exquisite reg-
ulation and profound potential of life.

Much theoretical investigation is still needed to improve the
‘Central Regulatory Network Hypothsis of Life.” The interac-
tions between ROS and the ‘Central Regulatory Network’ could
be of particular importance. As discussed in the articles about
‘deleterious network hypothesis’ of neurodegenerative diseases,
aging, and cell death (318-322), there are close interactions
among ROS, calcium homeostasis, and energy metabolism.
Profound interactions between ROS and NAD/NADP have also
been generalized in the current review. Because ROS plays im-
portant roles in many biological functions, it is proposed that
ROS is an important factor that closely interacts with all of the
three major components of the ‘Central Regulatory Network.’
Certain environmental and genetic factors may cause excessive

NMN/NaMN
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G6PDH
6GPDH Pathway pathway
IDP
MEP Dehydrogenases/Oxidases
TH
+ 4 -
NADPH+————NADP* +———— NAD" < »> NADH
Dehydrogenases
ARCs PARPs
GR
X Sirtuins ET‘_:
NADPH oxidase ARCs Oxidases
NAADP ARTs

Antioxidation
Oxidative Stress

Calcium homeostasis

Reductive biosynthesis

Mitochondrial function
Energy metabolism
Oxidative stress
Calcium homeostasis
Gene expression

Mitochondrial function
Energy metabolism
Calcium homeostasis
Gene expression

Cell death

Aging

FIG. 12. Metabolism and biological activities of NAD and NADP. NAD™ can be generated from the salvage pathway us-
ing nicotinic acid mononucleotide (NaMN) or nicotinamide mononucleotide (NMN) as precursors, or from the de novo pathway
using quinolinic acid (QA) as the precursor. Through NAD*-dependent dehydrogenases, poly(ADP-ribose) polymerases (PARPs),
sirtuins, ADP-ribosyl cyclases (ARCs), and mono(ADP-ribosyl)transferases (ARTs), NAD™ can significantly affect mitochon-
drial function, energy metabolism, calcium homeostasis, gene expression, aging, and cell death. NADH can be generated from
NAD* by NAD-dependent dehydrogenases, which is used by the electron transport chain (ETC) or NADH oxidases. NADH can
significantly affect mitochondrial function, energy metabolism, oxidative stress, calcium homeostasis, and gene expression.
NADP™ can be generated from NAD* by NAD™* kinases (NADK), which can be used for NADPH generation through glucose-
6-phosphate dehydrogenase (G6PDH), 6-glyconate phosphate dehydrogenase (6GPDH), NADP*-dependent isocitrate dehydro-
genases (IDPs), NADP*-dependent malic enzymes (MEPs), and transhydrogenase (TH). NADPH can be used by glutathione re-
ductase, NADPH oxidase, and other NADPH-dependent enzymes to mediate antioxidation, ROS generation, and reductive
synthesis. NADP™ could also be used by ADP-ribosyl cyclases (ARCs) to generate NAADP that can mobilize intracellular
Ca™ stores.
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ROS generation, thus disrupting the ‘Central Regulatory Net-
work’, leading to aging and numerous diseases. Future studies
into the interactions between oxidative stress and the ‘Centrual
Regulatory Network’ may further elucidate fundamental bio-
logical mechanisms.

Increasing evidence has suggested that NAD™ is the central
molecule in the metabolism and biological functions of NAD™,
NADH, NADP™", and NADPH: out of these four molecules,
NAD™ could be the only one that can be de novo synthesized,
while the generation of NADH, NADP™, and NADPH essen-
tially requires NAD™ as the original precursor. NAD™ also ap-
pears to have particularly extensive biological functions com-
pared with the other pyridine nucleotides. Therefore, it is
tempting to propose that NAD™ is the pivotal molecule in these
pyridine nucleotides.

Whereas there have been numerous significant findings about
the metabolism and biological functions of NAD and NADP
during the last 20 years, these findings have also raised many
questions that need to be answered by future studies. The fol-
lowing research directions may be of particular interest:

First, recent studies have suggested the presence of new
NAD/NADP metabolic machineries in various subcellular or-
ganelles as well as extracellular space. It is of significance to
further elucidate the regulation and biological significance of
these machineries.

Second, NADKSs play key roles in the balance between the
NAD pool and the NADP pool. It is warranted to determine the
roles of NADKS in modulating NAD-dependent and NADP-de-
pendent biological activities under both physiological and
pathological conditions.

Third, several studies have suggested close interactions
among NAD-generating enzymes and NAD-dependent en-
zymes, such as that between PARP-1 and NMNAT-1. Future
studies are needed to further determine the interactions among
these proteins, and to determine the effects of these interactions
on cell death, aging, and diseases.

Fourth, increasing evidence has indicated that multiple meta-
bolic products of NAD™, including cyclic ADP-ribose,
NAADP, ADP-ribose, and O-acetyl-ADP-ribose, are regulators
of calcium homeostasis. It is warranted to determine the inter-
actions among these regulators of calcium homeostasis.

Fifth, it is of great interest to determine the regulation of
NADH shuttling and NAD transport across the plasma mem-
branes of cells under physiological and pathological conditions.

Sixth, it is expected that future studies regarding the roles of
NADPH oxidase in biological and pathological processes would
yield ample information for understanding both basic biology
and pathogenesis of many diseases.

Seventh, it is warranted to further determine the therapeutic
potential of NAD* precursors, NAD and NADP for various dis-
eases.
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ABBREVIATIONS

AD, Alzheimer’s disease; AIF, apoptosis-inducing factor;
ART, mono(ADP-ribosyl)transferases; [P;: inositol 1,4,5-
triphosphate; IDPc, cytosolic NADP*-dependent isocitrate de-
hydrogenases; IDPm, NADP*-dependent isocitrate dehydroge-
nases; MAS; MEPc, cytosolic NADP*-dependent malic
enzyme; MEPm, mitochondrial NADP*-dependent malic en-
zyme; MPT, mitochondrial permeability transition; MPTP, 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NAADP, nico-
tinic acid adenine dinucleotide phosphate; NAD ™, nicotinamide
adenine dinucleotide; NADH, reduced adenine dinucleotide;
NADP*, nicotinamide adenine dinucleotide phosphate;
NADPH, reduced nicotinamide adenine dinucleotide phos-
phate; Nampt, nicotinamide phosphoribosyltransferase; NM-
NAT, nicotinamide mononucleotide adenylyltransferase;
PARG, poly(ADP-ribose) glycohydrolase; PARP-1, poly(ADP-
ribose) polymerase-1; PD, Parkinson’s disease; ROS, reactive
oxygen species; TCA cycle, tricarboxylic acid cycle; TH, tran-
shydrogenase; W1d(S), Wallerian degeneration slow.
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